Skip to main content
Log in

Recent advances in the development of biosensor for phenol: a review

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Phenol and its derivatives are widespread contaminants whose sources are both natural and industrial. Phenol is massively produced and used as a starting material for synthetic polymers and fibers. Although phenolic compounds play important biochemical and physiological roles in living systems, their accumulation in the environment as a result of intensive human activity may result in drastic ecological problem. Various analytical techniques are available for the detection of phenol in environmental samples. But they need complex sample pre-treatment so as are time consuming, costly and use heavy devices. On the other hand a biosensor is a device that gives rapid detection, cost effective and easy. A review study was carried out to accumulate the possible biosensors for the detection of phenolic compounds in environmental samples. A number of biological components including microorganisms, enzymes, antibodies, antigens, nucleic acids etc. can be used for the construction of biosensors that was found to detect phenolic compounds. Of all type of biological components microorganisms and enzymes are mostly used. The microorganisms are Pseudomonas, Moraxella, Arthrobacter, Rhodococcus, and Trichosporon. The most used enzymes are tyrosinase, peroxidase, laccase, glucose dehydrogenase, cellobiose dehydrogenase etc. Antibody sensors can detect a very trace level. The biorecognition of DNA biosensors occur by hybridization of DNA. Biosensors are found to work well when the biological sensing element is immobilized. A variety of immobilization techniques were found to use as adsorption, covalent binding, entrapment, cross-linking etc. For immobilization the matrices used was polyvinyl alcohol, Osmium complex, nafion/sol–gel silicate, chitosan, silica gel etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullah J, Ahmad M, Karuppiah N, Heng LY, Sidek H (2005) Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens Actuat B 114:604–609

    Article  Google Scholar 

  • Abdullah J, Ahmad M, Karuppiah N, Heng LY, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors 7:2238–2250

    Article  CAS  Google Scholar 

  • Barek J, Ebertova H, Mejstrik V, Zima J (1994) Determination of 2-nitrophenol, 4-nitrophenol, 2-methoxy-5-nitrophenol, and 2,4-dinitrophenol by differential-pulse voltammetry and adsorptive stripping voltammetry. Collect Czech Chem Commun 59:1761–1771

    Article  CAS  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  Google Scholar 

  • Besombes JL, Cosnier S, Labbe P, Reverdy G (1995) Improvement of the analytical characteristics of an enzyme electrode for free and total cholesterol via laponite clay additives. Anal Chim Acta 317:275–280

    Article  CAS  Google Scholar 

  • Bickerstaff GF (1997) Immobilization of enzymes and cells, methods in biotechnology, vol 1. Humana Press Inc., Totowa

    Google Scholar 

  • Blum LJ, Coulet PR (1991) Biosensor principles and applications. Marcel Dekker, New York

    Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  Google Scholar 

  • Chang SC, Rawson K, McNeil CJ (2002) Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosens Bioelectron 17:1015–1023

    Article  CAS  Google Scholar 

  • Chen X, Cheng G, Dong S (2001) Amperometric tyrosinase biosensor based on a sol–gel derived titanium oxide-copolymer composite matrix for detection of phenolic compounds. Analyst 126:1728–1732

    Article  CAS  Google Scholar 

  • Clement RE, Eiceman GA, Koester CJ (1995) Environmental analysis. Anal Chem 67:221–255

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and waste water, American Public Health Association, 20th edn, pp 6:73–6:78

  • Cordero-Rando MM, Naranjo-Rodríguez I, Palacios-Santander JM, Cubillana-Aguilera LM, Hidalgo–Hidalgo-de-Cisneros JL (2005) Study of the responses of a sonogel-carbon electrode towards phenolic compounds. Electroanalysis 17:806–814

    Article  CAS  Google Scholar 

  • Cosnier S, Popescu I (1996) Poly(amphiphilicpyrrole)-tyrosinase-peroxidase electrode for amplified flow injection-amperometric detection of phenol. Anal Chem Acta 319:145–151

    Article  CAS  Google Scholar 

  • Crumbliss AL, Stonehuerner J, Henkens RW, O’Daly JP, Zhao J (1994) The use of inorganic materials to control or maintain immobilized enzyme activity. New J Chem 18:327–339

    CAS  Google Scholar 

  • D`Souza SF (2001) Microbial biosensors (review). Biosens Bioelectron 16:337–353

    Article  CAS  Google Scholar 

  • Dai Z, Xu X, Wu L, Ju H (2005) Detection of trace phenol based on mesoporous silica derived tyrosinase-peroxidase biosensor. Electroanalysis 17:1571–1577

    Article  CAS  Google Scholar 

  • Dosemeci M, Blair A, Stewart PA, Chandler J, Trush MA (1991) Mortality among industrial workers exposed to phenol. Epidemiology 2:188–193

    Article  CAS  Google Scholar 

  • Duran N, Rosa MA, D’Annibale A, Gianfreda L (2002) Enzyme Microb Technol 31:907–931

    Article  CAS  Google Scholar 

  • Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. IRBM 29:171–180

    Article  Google Scholar 

  • Elkaoutit M, Naranjo-Rodriguez I, Temsamani KR, La Vega MD, Hidalgo–Hidalgo-de-Cisneros JL (2007) Dual laccase–tyrosinase based sonogel–carbon biosensor for monitoring polyphenols in beers. J Agric Food Chem 55:8011–8018

    Article  CAS  Google Scholar 

  • Ferreira M, Varela H, Toressi RM, Tremiliosi-Filho G (2006) Electrode passivation caused by polymerization of different phenolic compounds. Electrochim Acta 52:434–442

    Google Scholar 

  • Freire RS, Durana N, Kubota LT (2002) Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices. J Braz Chem Soc 13:119–123

    Article  Google Scholar 

  • Gomes SASS, Rebelo MJF (2003) A new laccasse biosensor for polyphenol determination. Sensors 3:166–175

    Article  CAS  Google Scholar 

  • Hashimoto K, Ito K, Ishimori Y (1994) Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem 66:3830–3833

    Article  CAS  Google Scholar 

  • Hernandez L, Hernandez P, Vicente J (1993) Voltammetric determination of methyl parathion, ortho, meta and para nitrophenol with a carbon paste electrode modified with C-18. Fresenius J Ana Chem 345:712–715

    Article  CAS  Google Scholar 

  • IARC (1989) IARC monographs on the evaluation of carcinogenic risks to humans, some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting, International Agency for Research on Cancer, Lyon, 47: 263–287

  • Killard AJ, Deasey B, O’Kennedy R, Smyth MR (1995) Antibodies production, functions and applications in biosensors. Trends Anal Chem 14:257–266

    CAS  Google Scholar 

  • Kim MA, Lee WY (2003) Amperometric phenol biosensor based on sol-gel silicate/nafion composite film. Anal Chim Acta 479:143–150

    Article  CAS  Google Scholar 

  • King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2003) A microbial biosensor for p-nitrophenol using arthrobacter Sp. Electroanalysis 15:1160–1164

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  • Leveau JHJ, Lindow SE (2002) Bioreporters in microbial ecology. Curr Opin Microbiol 5:259–265

    Article  Google Scholar 

  • Li N, Xue MH, Yao H, Zhu JJ (2005) Reagent less biosensor for phenolic compounds based on tyrosinase entrapped within gelatine film. Anal Bioanal Chem 383:1127–1132

    Article  CAS  Google Scholar 

  • Lindgren A, Emneus J, Ruzgas T, Gorton L, Marko-Varga G (1997) Amperometric detection of phenols using peroxidase-modified graphite electrodes. Anal Chim Acta 347:51–62

    Article  CAS  Google Scholar 

  • Liu Z, Liu B, Kong J, Deng J (2000) Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor. Anal Chem 72:4707–4712

    Article  CAS  Google Scholar 

  • Makarenko AA, Bezverbnaya IP, Kosheleva IA, Kuvichkina TN, Il’yasov PV, Reshetilov AN (2002) Development of biosensors for phenol determination from bacteria found in petroleum fields of West Siberia. Appl Biochem Microbiol 38:23–27

    Article  CAS  Google Scholar 

  • Marrazza G, Chiti G, Mascini M, Anichini M (2000) Detection of human apolipoprotein E genotypes by DNA electrochemical biosensor coupled with PCR. Clin Chem 46:31–37

    CAS  Google Scholar 

  • Mascini M, Palchetti I, Marrazza G (2001) DNA electrochemical biosensors. Fresenius J Anal Chem 369:15–22

    Article  CAS  Google Scholar 

  • Mehrvar M, Bis C, Scharer J, Moo-Young M, Luong J (2000) Fiber-optic biosensors: trends and advances. Anal Sci 16:677–692

    Article  CAS  Google Scholar 

  • Mello LD, Sotomayor MDPT, Kubota LT (2003) HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sens Actuat B 96:636–645

    Article  Google Scholar 

  • Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42:193–209

    CAS  Google Scholar 

  • Morimoto K, Koizumi A, Tachibana Y, Dobashi Y (1976) Inhibition of repair of radiation induced chromosome breaks, effect of phenol in cultured human leukocytes. Jpn J Ind Health 18:478–479

    CAS  Google Scholar 

  • Mulchandani P, Hangarter CM, Lei Y, Chen W, Mulchandani A (2005) Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens Bioelectron 21:523–527

    Article  CAS  Google Scholar 

  • Nikolelis D, Krull U, Wang J, Mascini M (1998) Biosensors for direct monitoring of environmental pollutants in field. Kluwer Academic, London

    Google Scholar 

  • Nistor C, Oubi˜na A, Marco MP, Barcelo D (2001) Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal Chim Acta 426:185–195

    Article  CAS  Google Scholar 

  • Poirier MC, De Cicco BT, Lieverman MW (1975) Nonspecific inhibition of DNA repair synthesis by tumor promoters in human diploid fibroblasts damaged with N-acetoxy-2-acetyl aminofluorene. Cancer Res 35:1392–1397

    CAS  Google Scholar 

  • Popescu IC, Zetterberg G, Gorton L (1995) Influence of graphite powder, additives and enzyme immobilization procedures on a mediator less HRP-modified carbon paste electrode for amperometric flow injection detection of H2O2. Biosens. Bioelectron 10:443–461

    Article  CAS  Google Scholar 

  • Rainina EI, Badalian IE, Ignatov OV, Fedorov AYU, Simonian AL, Varfolomeyev SD (1996) Cell biosensor for detection of phenol in aqueous solutions. Appl Biochem Biotechnol 56:117–127

    Article  CAS  Google Scholar 

  • Rensing C, Maier RM (2003) Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56:140–147

    Article  CAS  Google Scholar 

  • Riedel K, Hensel J, Rothe S, Neumann B, Scheller F (1993) Microbial sensors for determination of aromatics and their chloroderivatives. Part II: determination of chlorinated phenols using a Rhodococcus-containing biosensor. Appl Microbiol Biotechnol 38:556–559

    Article  CAS  Google Scholar 

  • Riedel K, Beyersdorf-Radeck B, Neumann B, Schaller F (1995) Microbial sensors for determination of aromatics and their chloro derivatives. Part II1: determination of chlorinated phenols using a biosensor containing Trichosporonbeigelii (cutaneum). Appl Microbiol Biotechnol 43:7–9

    Article  CAS  Google Scholar 

  • Rodriguez IN, Barea Zamora M, Barber′a Salvador JM, Mu˜nozLeyva JA (1997a) Use of a bentonite-modified carbon paste electrode for the determination of some phenols in a flow system by differential-pulse voltammetry. Analyst 122:601–604

    Article  Google Scholar 

  • Rodriguez IN, Mu˜noz Leyva JA, Hidalgo Hidalgo de Cisneros JL (1997b) Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry. Anal Chim Acta 344:167–173

    Article  Google Scholar 

  • Rodriguez IN, Barea Zamora M, Barber′a Salvador JM, Mu˜nozLeyva JA, Hernandez-Artiga MP, Hidalgo Hidalgo de Cisneros JL (1997c) Voltammetric determination of 2-nitrophenol at a bentonite-modified carbon. Mikrochim Acta 126:87–92

    Article  Google Scholar 

  • Rodriguez-Mozaz S, López de Alda MJ, Marco MP, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386(4):1025–1041

    Article  CAS  Google Scholar 

  • Rogers KR, Mascini M (2009) Biosensors for analytical monitoring—general introduction and review. In: US Environmental Protection Agency, http://www.epa.gov/heasd/edrb/biochem/intro.html Accessed 5th Jan, 2011

  • Rogers KR, Becker JY, Cembrano J, Chough SH (2001) Viscosity and binder composition effects on tyrosinase-based carbon paste electrode for detection of phenol and catechol. Talanta 54:1059–1065

    Article  CAS  Google Scholar 

  • Rosatto SS, Kubota LT, Oliveira NG (1999) Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica-titanium. Anal Chim Acta 390:65–72

    Article  CAS  Google Scholar 

  • Rosatto SS, Neto GO, Kubota LT (2001) Effect of DNA on peroxidase based biosensor for phenol determination in waste waters. Electroanalysis 6:445–450

    Article  Google Scholar 

  • Russell IM, Burton SG (1999) The development of an immobilized enzyme bioprobe for the detection of phenolic pollutants in water. Anal Chim Acta 389:161–170

    Article  CAS  Google Scholar 

  • Ruzgas T, Emneus J, Gorton L, Marko-Varga G (1995) The development of a peroxide biosensor for monitoring phenol and related aromatic compounds. Anal Chim Acta 311:245–253

    Article  CAS  Google Scholar 

  • Scouten WH, Luong JHT, Brown RS (1995) Enzyme or protein immobilization techniques for applications in biosensor design. Tibtech 13:178–185

    Article  CAS  Google Scholar 

  • Shan G, Lipton C, Gee SJ, Hammock BD (2002) Immunoassay, biosensors and other nonchromatographic methods. In: Lee PW (ed), Handbook of residue analytical methods for agrochemicals, pp 623–679

  • Singh M, Verma N, Garg AK, Redhu N (2008) Urea biosensors. Sens Actuat B-Chem 134:345–351

    Article  Google Scholar 

  • Solomon EI, Lowery MD (1993) Electronic structure contributions to function in bioinorganic chemistry. Science 259:1575–1581

    Article  CAS  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    CAS  Google Scholar 

  • Straube G, Hensel J, Niedan AC, Straube E (1990) Kinetic studies of phenol degradation by Rhodococcus sp. P1. I. Batch cultivation. Antonie van Leeuwenhoek 57(3):29–32

    Article  CAS  Google Scholar 

  • Svitel J, Miertus S (1998) Development of tyrosinase-based biosensor and its application for monitoring of bioremediation of phenol and phenolic compounds. Environ Sci Technol 32:828–832

    Article  CAS  Google Scholar 

  • Svorc J, Miertus S, Katrlik J, Stredansky M (1997) Composite transducers for amperometric biosensors: the glucose sensor. Anal Chem 69:2086–2090

    Article  CAS  Google Scholar 

  • Tembe S, Inamder S, Haram S, Karvee M, D’Souza SF (2007) Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase. J Biotechnol 128:80–85

    Article  CAS  Google Scholar 

  • Timur S, Pazarlioğlu N, Pilloton R, Telefoncu A (2003) Detection of phenolic compounds by thick film sensors based on Pseudomonas putida. Talanta 61:87–93

    Article  CAS  Google Scholar 

  • Tran MC (1993) Biosensors. Chapman and Hall and Masson, Paris

    Google Scholar 

  • Turner APF, Karube I, Wilson GS (1992) Biosensors: fundamentals and applications. Mir Publishers, Moscow

    Google Scholar 

  • Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551

    Article  CAS  Google Scholar 

  • Walcarius A (1998) Analytical applications of silica-modified electrodes: a comprehensive review. Electroanalysis 10:1217–1235

    Article  CAS  Google Scholar 

  • Wang J, Cai X, Rivas G, Shiraishi H, Dontha N (1997) Nucleic acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens Bioelectron 12:587–599

    Article  CAS  Google Scholar 

  • Xue H, Shen Z (2002) A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline-polyacrylonitrile composite matrix. Talanta 57:289–295

    Article  CAS  Google Scholar 

  • Yang S, Li Y, Jiang X, Chen Z, Lin X (2005) Horseradish peroxidase biosensor based on layer by-layer technique for the determination of phenolic compounds. Sens Actuat B 114:774–780

    Article  Google Scholar 

  • Yildiz HB, Castillo J, Guschin DA, Toppare L, Schuhmann W (2007) Phenol biosensor based on electrochemically controlled tyrosinase in a redox polymer. Microchimacta 159:27–34

    Article  CAS  Google Scholar 

  • Yu J, Ju H (2004) Pure organic phase phenol biosensor based on tyrosinase entrapped in a vapor deposited titania sol-gel membrane. Electroanalysis 16:1305–1310

    Article  CAS  Google Scholar 

  • Yu J, Liu S, Ju H (2003) Mediator free phenol sensor based on titania sol-gelincapsulation matrix for immobilization of Tyrosinase by a vapor deposition method. Biosens Bioelectron 19:509–514

    Article  CAS  Google Scholar 

  • Zhao Z, Jiang H (2010) Enzyme-based electrochemical biosensors, p 302. In: Serra PA (ed) Biosensors. ITECH, Crotia

  • Zietek M (1975) Polarographic-determination of parathion and its metabolite p-nitrophenol in blood extracts. Mikrochim Acta 64:463–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. M. Fakhruddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, F., Fakhruddin, A.N.M. Recent advances in the development of biosensor for phenol: a review. Rev Environ Sci Biotechnol 11, 261–274 (2012). https://doi.org/10.1007/s11157-012-9268-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9268-9

Keywords

Navigation